2d Grushin-type equations: Minimal time and null controllable data
نویسندگان
چکیده
منابع مشابه
2D Grushin-type equations: minimal time and null controllable data
We study internal null controllability for degenerate parabolic equations of Grushin-type Gγ = ∂ xx + |x|∂ yy, (γ > 0), in the rectangle (x, y) ∈ Ω = (−1, 1)× (0, 1). Previous works proved that null controllability holds for weak degeneracies (γ small), and fails for strong degeneracies (γ large). Moreover, in the transition regime and with strip shaped control domains, a positive minimal time ...
متن کاملNull controllability of degenerate parabolic equations of Grushin and Kolmogorov type
The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator ∂ x + |x|∂ y (γ > 0) in the rectangle (x, y) ∈ (−1, 1)×(0, 1) or with the Kolmogorov-type operator v∂xf+∂ vf (γ ∈ {1, 2}) in the rectangle (x, v) ∈ T×(−1, 1), under an additive control supported in an open subset ω ...
متن کاملNull controllability of Grushin-type operators in dimension two
We study the null controllability of the parabolic equation associated with the Grushin-type operator A = ∂ x+|x|∂ y , (γ > 0), in the rectangle Ω = (−1, 1) × (0, 1), under an additive control supported in an open subset ω of Ω. We prove that the equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1. In the transition ...
متن کاملEquations involving a variable exponent Grushin-type operator
In this paper we define a Grushin-type operator with a variable exponent growth and establish existence results for an equation involving such an operator. A suitable function space setting is introduced. Regarding the tools used in proving the existence of solutions for the equation analyzed here they rely on the critical point theory combined with adequate variational techniques. 2010 Mathema...
متن کاملNull controllability of Kolmogorov-type equations
We study the null controllability of Kolmogorov-type equations ∂t f + v ∂x f − ∂2 v f = u(t, x, v)1ω(x, v) in a rectangle , under an additive control supported in an open subset ω of . For γ = 1, with periodic-type boundary conditions, we prove that null controllability holds in any positive time, with any control support ω. This improves the previous result by Beauchard and Zuazua (Ann Ins H P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2015
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.07.007